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PROBLEM STATEMENT #1

• Entity-level combat simulations, such as the Infantry Warrior Simulation (IWARS), require probability of 
incapacitation (P(I)) estimates for fragmenting munitions that depend on target posture, target body 
armor, casualty criterion, firer-to-target range, burst height, burst-to-target azimuth angle, and burst-to-
target range.

• This data is provided in large lookup tables, but using such large tables can slow down the simulation, 
and sometimes the tables are too large to fit into the simulation’s database.

Munition
# Firer-to

Target
Ranges

# Burst
Heights

# Burst-to-
Target

Azimuth Angles

# Burst-to-
Target

Ranges

Grid
Size

Munition #1 7 9 91 41 235,053

Munition #2 1 1 91 61 5,551

Munition #3 8 1 91 35 25,480

Munition #4 3 2 91 41 22,386

Clothing, Vest, Helmet
Winter, Interceptor #3, ACH

Winter, PASGT, PASGT
Winter, none, none

Winter, none, PASGT

Posture
Standing

Crouching
Kneeling

Prone
Foxhole

Casualty
Criterion

30SA
30SD
5MA
5MD

Munition
(about 11)

M67
M384

M397A1
M406
etc…

Grid Size
(Firer-to-Target Ranges,

Burst Heights,
Burst-to-Target Az. Angles,

Burst-to-Target Ranges)
5,000 to 250,000

Number of
P(I)

Estimates
76,000,000
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DATA VISUALIZATION

• The P(I) data for just one firer-to-target range and burst height can be complicated.

Azimuth 
Angle

P(I)P(I) vs. Burst-to-Target Range and Azimuth Angle
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CURRENT SOLUTIONS

• None of these solutions is an optimal balance of fidelity and compression.

Increasing Fidelity
In

cr
ea
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ng
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om
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Name Description Example

Carleton
Damage
Function

Assumes P(I) drops off exponentially:
P(I) = D0*exp(-π*D0*r2/AL), where
D0 is zero-range P(I),
AL is lethal area, and r is range.

PIVR
(Probability of 
Incapacitation 

vs. Range)

P(I) vs. miss-distance (burst-to-target range).
Does not model azimuth angle.

PIVR_Angle
(P(I) vs. 

Range and 
Angle)

P(I) vs. miss-distance and 3 angular zones.
Requires judgment in defining zones.

Whole-Body
Grid P(I) vs. miss-distance and 91 azimuth angles.

By-Body-Part
Grid

P(I) vs. miss-distance and 91 azimuth angles
and 6 body-parts.  Can be used to improve the
modeling of partial cover.
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NEURAL NETWORK SOLUTION

• A neural network is a regression equation with many free parameters.
• A neural network can, in theory, approximate any reasonable function arbitrarily well.
• If the size of the network is less than the size of the training data, the result is data compression.

Training
Overview

1. Inputs are fed into net and output is 
calculated.

2. Predicted output is compared to 
known output to calculate the error.

3. Weights are adjusted to decrease 
the error.

4. Process ends when error is “small”.

Firer-to-
Target 
Range
Burst

Height
Burst-to-
Target 

Azimuth 
Angle

Burst-to-
Target 
Range

P(Incapacitation)

Regression Equation
(matrix form)

Neural NetworkInputs
Output
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TRAINING IN ACTION
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BAYESIAN OPTIMIZATION

• Mean squared error (MSE) can vary significantly depending on the training function and network parameters.
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GENERALIZATION AND DATA AUGMENTATION

• The 66,339 P(I) values used for training in this example were for 3 firer-to-target ranges, 9 burst heights, 
27 burst-to-target ranges, and 91 azimuth angles.

• To improve generalization, a new network was trained on linearly interpolated P(I) values for 18 firer-to-
target ranges and 18 burst heights.
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EXAMPLE SCENARIO RESULTS

50 to 400 m (0.5 m above wall)5 m

Firer Target
Wall

Aim Point

Original P(I) Neural Net

PIVR_Angle PIVR

Defilade Target Scenario
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IWARS Results For Defilade Target Scenarios
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EXAMPLE SCENARIO RESULTS
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PROBLEM STATEMENT #2

• When performance data is not available for a system, subject-matter experts (SMEs) may provide data 
for another, similar system as a surrogate.

• SMEs may have to surrogate thousands of data items for just one data request.
This can be tedious and error-prone.



Approved for public release

Approved for public release

12

SOLUTION

• Trained a gradient boosted decision tree model to predict the best available 
system/weapon/mount/munition/target pairing to use as a surrogate for a desired 
system/weapon/mount/munition/target pairing.
– Used LightGBM with one classifier per output (e.g., available system and available munition are two different outputs).
– Distinct output values were treated as classes (e.g., M4, M16, and M16A2 rifles were treated as separate classes).
– Tuned model hyperparameters using randomized search with stratified 3-fold cross-validation

• Achieved high prediction accuracy as shown in the table below. These results are for a small arms 
“Probability of Kill given a Shot” (PKS) data request with 1,013 pairings.

Feature Top-1 
Accuracy

Top-3 
Accuracy

Training 
Time (min)

System 90% 96.0% 2.2
Weapon 96% 99.4% 1.6
Mount 94% 99.6% 0.4

Munition 96% 100.0% 2.1
Target 87% 96.0% 7.6
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LESSONS LEARNED

• HPC speedup enables cross-validation and hyperparameter optimization.

• High dimensionality, sparseness, missing values, and “messiness” make the Equipment Characteristics 
Database (ECDB) a difficult dataset to learn from.
– 103 munition characteristics ranging from ‘Cone_Liner_Angle’ to ‘Frequency_Band’.
– No M855A1 munition; several other fielded munitions were missing.
– Different names describe the same characteristic, such as ‘Num_Submunitions’ and ‘Number_Submunitions’.
– Typographical errors such as ‘0’ instead of ‘O’.
– Multi-value fields such as ‘Altitude_Band’ in the format ‘MinHeight – MaxHeight’.
– Inconsistent units such as some ‘Explosive_Weight’ values in pounds and others in kilograms.
– Missing units, inconsistent labeling of ‘n/a’ and unknown data, values assigned to the wrong field, etc…
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